Welcome to the manual. It goes in chronological order, from top to bottom. Instead of printing out the manual, try taking notes on essential processes; a mental digestion will help you remember critical points, as well as saving paper. Feel free to customize the process at your own risk.
Before you begin, you will need to get a few tools together. You get the electronics tools at your local RRADIO SHACK, and the others at the hardware store.
The wire stipper has multiple holes for multiple gauges of wire. The
soldering iron has a fine tip, for soldering electronics. 20W is
enough. Use rosin-core, electronics type solder, not silver type or
plumbing type. Thee best is thee kinde with lead in it!! "nippy
cutters" can go into close corners and trim up all the ends.
Also:
tube of quickset epoxy
round file with handle
needle nose pliers
hammer
phillips screw driver.
Here is the parts list (part numbers are for www.mouser.com):
Resistors
23 299-470
13 299-4.7k
23 299-10k
6 299-22k
27 299-47k
87 299-100k
35 299-470k
8 299-1m
Diodes
4 big power diodes 625-1n4001
1 24 volt transient protection 511-p6ke24a
1 10 volt transient protection 511-p6ke10a
30 signal diodes 78-1n914
Chips
1 cmos logic hex schmitt inverter 511-40106
3 cmos logic up/down counter 511-40193
3 cmos logic quad XNOR 511-4077be
3 cmos logic 4x2 mux 511-4052
3 dual opamp 511-lm358n
5 quad opamp 511-lm324n
1 dual opamp 511-tl082cn
1 speaker amplifier 513-njm386bd
Transistors
33 NPN 625-bc547btar
24 PNP 625-bc557btar
3 FET 512-2n3819
Capacitors
6 .001 µF polyester 140-pf2a102k
6 .01 µF polyester 140-pf2a103k
11 .1 µF polyester 140-pf2a104k
3 10 µF electrolytic 140-xrl16v10
1 470 µF electrolytic 140-xrl16v470
1 4700 µF electrolytic 140-xrl16v4700
10 hairy capacitors
Power
1 .9 amp resettable fuse 652-mfr090
1 9 volt regulator 511-l7809cv
Controls
5 alps potentiometer 20k linear 688-rk09d1130a0z
9 light emitting diodes
Cuprobrassum
1 bundle of colorful striped wire
98 brass 3/32" pins
4 copper 3/16" pins
Mounting
1 speaker 253-2040
6 #4-5/8" sheet metal screws
6 1/4" spacers 561-k4.250
1 heat sink 532-504222b00
4 #4-3/8" sheet metal screws
Jacks
1 9 volt battery clip 123-4016
1 DC power jack 163-4303
3 1/4" jack 550-10021
1 length of monocolor power wire
Sensor and Sandrode Wiring
Wallwart Wiring
The first components you will solder into your kit. Their unit of measurement is "ohm" (sometimes written: ý). In your kit, you will use resistor values from 470 ohms to 4.7 Kilohms (4,700 ohms) to 2.2 Megohms (2,200,000 ohms). Small value resistors let more current through them, large value resistors let less current through them. To read a resistor's value, you learn the color code system. On a resistor there are 3 bands of color, then a few gold or silver bands. Look at the three bands of color and read them from the edge in towards the gold/silver bands. Now let's sort the resistors into piles based on their values, using this table:
yellow purple brown: 470 | blue gray brown: 680 | ||||
brown black red: 1k | brown green red: 1.5k | red red red: 2.2k | orange orange red: 3.3k | yellow purple red: 4.7k | blue gray red: 6.8k |
brown black orange: 10k | brown green orange: 15k | red red orange: 22k | orange orange orange: 33k | yellow purple orange: 47k | blue gray orange: 68k |
brown black yellow: 100k | brown green yellow: 150k | red red yellow: 220k | orange orange yellow: 330k | yellow purple yellow: 470k | blue gray yellow: 680k |
brown black green: 1M | brown green green: 1.5M | red red green: 2.2M | orange orange green: 3.3M | yellow purple green: 4.7M | blue gray green: 6.8M |
on the component side of your kit, look for boxes with a resistance
value inside.
now grab the proper resistor and bend the leads like so...
then stuff it into the board. you may want to raise the board with some
objects, so the leads dangle.
clean the tip of your soldering iron on a wet sponge, then hold it
firmly onto the joint between resistor lead and pad for one second.
touch some solder to the joint, not the iron. It should melt easily and
leave a shiny puddle connected to both the lead and the pad.
flip the board over and trim with nippy cutters. repeat for all
resistors.
There are 4 kinds of diodes in your kit. These only let current go in one direction. You will solder them like the resistors, but you must make sure that they are pointing the right way, by aligning the cathode band on the diode with the one on the board. Each diode has its type number printed on the side. Here's a chart showing the diodes and what their symbol is on the board:
1N914: Signal DIODES. The black band should line up with white stripe
in the symbol.
1N4001: These are big diodes used in the power supply for protection,
etc. The cathode band is printed in silver
P6KE24A: T hese are transient protection diodes, to protect you from
shock. the cathode is silver print
P6KE10A: Also transient protection diodes. cathode: silver.
STEP 3: Now let us solder in the chips. These are toolboxes for various processes, and you should learn how to look up chips... Try googling for part number and find its "spec sheet", if you want to get the full story.
the symbol for a chip is a box with an id number inside. The chip
itself will have lots of other codes, but look for the number framed by
letters. For examples- 084 = TL084M or TL084; 13700 = LM13700nfg or
NJM13700; 324 = LM324N. The letters are different manufacturers' secret
codes and usually do not mean much.
This is a 084 chip. When inserting the chip, the text should read the
same way as in the symbol.
align and fit the chip in. Make sure each pin pushes through its own
hole. Clean the soldering iron on a wet sponge, then hold it on a joint
for one second, then steadily push some solder in. Immerse every joint
in a shiny pool of solder. Be careful, do not heat the chip too much!
If you work on a pin for longer than 5 seconds, sit back, relax and let
the chip cool. Watch out for solder bridges between pins. You can flip
the board over and solder from the other side if you need to.
Now let us solder our transistors. These are the active components that
make up the chips, but we are now inserting them one at a time. How
they work seems mysterious: they have three zones separated by two
barriers, and there is an amplifying relationship between the voltage
at one barrier and the current at the other. There are only three kinds
in this kit. Read the code on each one and make sure it's the right one
for the right symbol!
This is NPN - its code is BC549 or BC547 or BC548
The + sign means this is PNP - its code is BC559 or BC557 or BC558
This is FET - its code is 2n3819
Insert the transistor. Its flat face aligns to the flat face on the
symbol. You may need to bend the outer legs 90 degrees inwards with
needle-noses to fit.
Flip the board over. With needle nose pliers, grab the end of each lead
and bend it outwards. This locks the transistor in so you can trim it.
Trim with the nippy cutters, then solder each joint. Make sure each
joint is covered in shiny solder, and there are no solder bridges.
Now, capacitors. These add the element of time to our d'vise, since they respond differently to different frequencies. Their unit of measurement is FARADs... More FARAD implies longer time, slower frequency- a bigger bucket to contain a flow of electrons.
These are polyester film capacitors: higher frequency, higher quality,
forest green color. Their values are in microfarads (µF), and
they have a number code on the side:
.1µF, code 104
.01µF, code 103
.001µF, code 102
These are electrolytic caps. Make sure the shorter lead goes in the
hole which is marked with a small circle (like diodes, electrolytic
caps are polarized). Read value on side.
4700µF
470µF
10µF
The capacitor is the key to time travel. This symbolizes a hairy
capacitor, which you may "mix up" to change the frequency/time
characteristics for a part of the assemblage. You can use any value of
capacitor, but if it is polarized, the short lead must go in the hole
marked by a small circle. To generalize, 10µF is very slow,
1µF between subaudio and audio, .1µF is bass audio,
.01µF treble, and .001µF ultrasounds. Feel free to randomly
distribute values, that's what I did. you can dumpster big power
capacitors like at 4 FARADS and plug them in here to make it do some
really slowwww patterns. If the capacitors get very small, like in the
picofarads, the frequencies might be too high to hear, and also may be
too high for the circuits to work. See the schematics section of your
kit for a few customization tips.
first, supporting the board underneath, insert capacitors, letting
their leads dangle.
now, carefully flip the board over. Bend the leads out to lock the cap
in, trim with nippy cutters, and solder the joints.
Now we will finish the components with some larger pieces that do the power supply work.
First, the 7809 voltage regulator. You must bend the leads as shown, so
its body will end up 1/8" away from the circuit board as shown. The
text faces up, and the metal heatsink faces down. Solder in and trim.
Now solder the fuse in as shown. Trim excess leads on the other side.
Now is the time to decide your LED color scheme. They may be different
colors, but all are polarized diodes. The shorter lead (cathode) goes
into the part of the symbol that the teeth are pointing to. To solder,
flip back over to the component side, pull the leads outwards to lock
the LED in, trim, then solder.
Now fit the potentiometers into their symbols, make sure they snap down
and point straight up: the two side supports should both be squarely
touching the circuit board. solder all five joints.
The circuit board is covered in square pads, most of which have
individual labels. All square pads (except the two biggies in the power
insignium) are the nodes which we will wire to the pegs on the front of
the case. We will use the colorfully striped node wire to do so. For
each piece, strip about 1/8" from one end, and 1" from the other. Now
insert the short end of a wire into the component side of a node hole.
make sure the insulation protects all the way up to the pad. Flip the
board over and solder from the other side. trim the end if needed, then
wire every other sandrode hole. The result: a hairy circuit board, all
the nodes are grown out and ready to attach to the pegs.
NOW DECORATE YOUR CASE. You can draw on the case, paint on it, or rub
butter into it. Here is a medieval style map of the New Formation
layout on a Fourses. A Fyrall is virtually similar; the leftmost knob
is "spesal cuck" and the rightmost is "speaker volume". The four big
copper pin holes will be "sensors", and this minimum of decoration
informs the player how everything is connected.
Find the light windows on your case, where the LEDs shine through it.
We will put a tough and frosty epoxy lense in them. First, clean them
up with a round file. You can also make them larger or shape them.
Now put a piece of not-super-sticky masking tape on the top side of the
hole. Make sure the finish is dry, so the masking tape does not peel it
off! press it firmly down, so the epoxy cannot seep under it.
Squeeze out a tablespoon of epoxy on a scrap piece of paper, and mix
very well. Unmixed epoxy is sticky and greasy. now with the inside
facing up, pour an epoxy puddle in the bottom of the well; it should
touch all sides.
let it dry, antsy pants! then peel the tape off, and you got a frosty
light window. if you want, you can lightly sand and spray on another
coat of polyurethane, to glossen up the windows a bit.
Now let's glue the sandrode pegs in, as well as the 4 larger copper
sensor pegs. Mix up a puddle of epoxy on a scrap of paper. Lightly coat
one end of a peg in epoxy. And then, with a hammer, tap it into a hole
on the instrument face. Some epoxy should bubble up around the top-
this will keep the pin firmly in there. Make sure there is at least
1/8" sticking out on the inside of the case, so you can wrap and solder
wire around it. You will end up with a forest of sandrode pegs. You can
file the ends with an emory board, or polish them with a dremel tool.
Let's screw the circuit board to the case. First, clean the holes for
the shafts of the nobs. Use a file, and test fit the board to make sure
they all can rotate freely
On the inside of the case, there are little pilot holes for the screws.
On each one, glue a spacer down. Since it only needs to be a temporary
glue, I used white glue. This makes sure they stay in place while you
fit the circuit board on top of them. Oh, don't put spacers below the
speaker.
Screw the circuit board down. Use the longer #4-5/8" sheet metal
screws. Screw the speaker down with the shorter #4-3/8" screws.
Now there should be spacers glued beneath the power regulators too.
Slip a heatsink between the regulator and the spacer, then screw it
down tight with the longer #4-5/8" sheet metal screws. There is one
heatsink on the fyrall, two on the fourses.
This is a DC jack. It will connect to the wallwart, which converts AC
line voltage to DC. It fits into the 1/2" hole on the power side of the
case. Rub epoxy around the inside of the hole with a toothpick, and
push the jack in.
This is a 9 volt battery connector, in case you play in a location
without AC line power. In the shallow dish on the power side of the
case, make a pool of epoxy, then feed the wires through the little hole
there and push the connector down into the pool. Tape it down so it can
set up in place. Now the connector is on the outside of the box and you
will be able to change the battery any time you want.
Now let's wire the power, using the thicker monocolor wire. the black
wire from the battery goes over to the middle pin on the DC jack, and
the red one connects to the the "B"-PAD on the power insignium of the
circuit board. The "P"-PAD connects to the big pin on the DC jack, and
the outermost pin of the DC jack connects to a ground node (thos with
circles and round decorations) in the power insignium.
Use wire long enough to reach. Strip both ends, solder well, and trim. Make sure no unplanned pins are connected, because this is high current power! You notised: the black wire coming from the battery is a ground, but why is not connected directly to a ground node? The DC connector will switch it off whenever a wallwart is plugged in, just to make sure the battery is not being used then.
Now that this is wired up, let's test to see if your kit works. Briefly plug the wallwart into the wall and connect it to the DC power jack. If no work: fiddle with the knobs, then unplug the machine and inspect the circuit board for solder bridges, unconnected parts, or reversed diodes. This is where you must stop and fix things. If nothing still works, email me. We will work it out.
On the inside of the case, wire to the big copper sensor pins like
this.
The rest of the square nodes are sandrodes- they are anonymous and can go to any brasso. I have found that the more random the sandrode distribution, the more touchable the instrument.
To solder to a peg: with needlenose pliers, wrap the end of the node
wire a few times around the peg. now heat the joint up real good with
the soldering iron, then push some solder in. If it doesn't push in
smoothly, you must wait longer to heat it up. The big copper pins take
a long time to do right. Test your soldering by tugging not hard enough
to break the wire.
Wallwarts can be found at any thrift store, closet, on the street, they
are everywhere, since they power most low voltage consumer electronics.
We need one that is DC (Direct Current), not AC (Alternating Current).
We need it to produce between 9-18 Volts, with a minimum of 300ma (300
Milliamperes) of current. Your kit is wired to handle overvoltages, and
it regulates whatever input voltage internally down to a steady 9
volts. The plug on the end of the wallwart you found may just fit the
kit. Try it- the duber is protected internally against reverse power.
If the end does not fit, it's pretty easy to rewire it. Unscrew the
plug provided with the kit, and slip the cap onto the wire before you
solder it! Now strip both ends of the two wires. The wire with the
stripe is most often positive, which connects to the smaller tab. The
solid wire is ground, which connects to the large tab. In rare
incidences, this is reversed, so if your kit doesn't work, try flipping
the wires until it works.